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Abstract. In the Bargmann—Fock representation the coordinateact as bosonic creation
operators while the partial derivativés act as annihilation operators on holomorphic 0-forms as
states of aD-dimensional bosonic oscillator. Also consideripgorms and further geometrical
objects as the exterior derivative and Lie derivatives on a holomor@Ricwe end up with

an analogous representation for thedimensional supersymmetric oscillator. In particular, the
supersymmetry multiplet structure of the Hilbert space corresponds to the cohomology of the
exterior derivative. In addition, a 1-complex parameter group emerges naturally and contains
both time evolution and a homotopy related to cohomology. The emphasis is on calculus.

1. Introduction

The conventional Bargmann—Fock representation displays Dhdimensional bosonic
harmonic oscillator by using holomorphic 0-forms on a manifGil to represent states

in a Hilbert space. The bosonic creation and annihilation operators are represented by
andd,;, respectively [1-3]. Thus, the Bargmann—Fock representation is a local geometrical
concept. We extend this idea to include holomorppiforms and consider geometrical
operations on these to find that thedimensional supersymmetric (SUSY) oscillator [4-8]

is realized in every detail. This approach constitutes an alternative to the standard use of
Grassmann variables, as discussed in [9, 10] and in many papers quoted therein.

One way to develop the formalism would be to reformulate the local differential
geometry of the fullC? and impose the restriction to holomorphic quantities afterwards,
since the standard geometrical apparatus is more familiar for the more general case [11, 12].
Instead, in the second section, we will develop a calculus for a purely holomorphic
differential geometry and, by immediate interpretation, built up the corresponding physical
system simultaneously. The only structure that is not really geometric on a holomorphic
manifold but an additional ingredient is the scalar product, of which we give an alternative
definition not involving any integral which would exceed the concept of holomorphic
geometry. We will see that supersymmetry (SUSY) is supplied by the operatdihe
Hamiltonian is a Lie derivative corresponding to a 1-complex-parameter group that can be
split by holomorphicity into two equivalent 1-parameter groups. One can be identified with
evolution in a Hilbert space. The other supplies a homotopy that occurs in the proof of
Poincaé’s lemma [11]. We end this section with a brief discussion of the eigenstates of two
Lie derivatives, the first one being the Hamiltonian and the second one yielding coherent
states.
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The concluding remarks of the third section will first comment on the underlying
supergroup structure. Secondly, for completeness, we will give an integral expression for
the scalar product also accomodatipgorms. This will relate our representation, which
dispenses with square-integrable functions, to the coherent state representation and other
familiar representations, where square-integrable functions are employed. Finally, we give
a prescription that would give us the physical states represented by holomorphic forms, if
we started with the geometry of the fuli’.

In the following, all commutators are graded ones, i.e. if both entries have odd form
degree, we have an anti-commutator, otherwise we have a commutator. The type of the
commutator is indicated by a subscript for the convenience of the reader. The same indices
in upper and lower position indicate a sum from 10

2. Holomorphic geometry and the SUSY oscillator

Consider a manifoldR?” and choose a global parametrization, y/, j = 1,2,..., D,
where bothx/ and y’/ take values inR. We combine pairs of real coordinates into
z/ = x/ 4 iy/ taking values inC, such that our manifold is nowC”. Furthermore,
we demand that any functioB”® — C be of the form

@) = fo+ fidk + fud'd + - fir... = constante C (1)

i.e. holomorphic around the origint = z2 = --- = z? = 0. The series in equation (1)
has to be convergent on all @ and we call a manifold, where such functions @&
(holomorphicCP). In fact, f(z') < constantx exp(—>_";—1(z%)?/2) [3], in order to yield
normalizable states.

Besides the functions, it is natural to have holomorphic vector fields on our manifold.
Since we work in a fixed frame, there is a canonical decomposition

v =19, € TCP (2)

wherevi(z') are holomorphic functions as in equation (1) ahd= %(Zm —id,;) are the
holomorphic basis vectors TCP. Among the coordinates and the basis vectoi; the
following commutation relations hold due t;z’ = i

[z, 2/]- =[8.,8./]- =0 [0 2]~ = /. ()

This is the algebra of bosonic creatars and annihilatorsd,; operating on functions
equation (1).

From this point of view, we can apply to a ‘vacuum’ 1 (from the left) in order to
get equation (1), which represents a general state in a bosonic Fock space. Along with the
tangent spac&C} of the holomorphic vectors, the dual cotangent spage&CP, containing
the holomorphic 1-formsg® that provide linear maps of the holomorphic vector<tas
a natural geometrical structure. Again, there is a canonical decompositioh dz/ with
F; holomorphic as in equation (1) and/d= dx’/ +idy/. A holomorphic p-form may be
written as

FP(Z' dz/) = Fyy 4, (2) dz* ... dz* € APCP (4)

with the factorstl,,,kp(zi) as in equation (1). Observe thatQ p < D, although the
dimension ofC{ is 2D. Finally, holomorphic forms are (finite) power series in the d

D
W(', de/) = Fo(z)) + Fe(@)) de* + Fiy(2) de¥ de' + -+ € ACP = P ArCy) (5)
p=0

spanning the holomorphic exterior algebra.
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On holomorphic forms the interior derivative is a natural geometrical operation that
mapsAPCP to AP~1CP by contraction with a holomorphic vector As used in [13] an
interior derivative on a real manifold, induced by a real veet@:, can be written as

U ogxi .= rdxl =1y
where 9/dq, is a Grassmann left derivative with respect to the Grassmann number d
The duality of frame and coframe is expresseddby’/ddx’ = §/. Accordingly, a vector
v = vk(z)dx = JvF(zH)aw — 2ivk(z))d, induces an interior derivative

. .0
'O =V —— =1, 7
v' 9g, vadz’ i )

where we have defined a new Grassmann left derivalive = %(adxj —idgys). (On
CP, a general vectow = wk(z',z/)0 + wt(z’,z/)d:+ induces the interior derivative
iw = Wk, +w§8dzk). The duality of holomorphic framé,: and holomorphic coframezd
is expressed bydz’//adz’ = §/. This gives rise to

[de', de/]y = [Oa, dgi]s =0 [dar, /]y = 8/ ®)

which is the algebra of fermionic creation operator$ dnd annihilation operatoi.;. The
commutators of mixed bosonic and fermionic entries are

[z, de’]- = [2", a.i]- = [8.r, de/]- = [8.1, as]- = 0. ©)

Thus, equation (4) constitutes a general state vector of a Fock spac®witisonic andD
fermionic degrees of freedom.

The next task is to introduce a scalar product that makes the exterior algebra a Hilbert
space. We start by defining the adjoint operation. Inspired by the algebraic properties of
the elementary operatot$, dz/, 9.+, 3g,;, we define their adjoints by

)t =0, (dz/)* 1= g, (10)
with the rules(A + B)* = AT + BT, (AB)T = BTAT, (ANt = A andc¢t = ¢*, if
¢ = constante C. While a state vectol (z?, dz/) is a power series in’, dz/, its dual

Wt (34,1, 0,+) iS @ power series id,«, dg,;. The prescription for the scalar product of two
state vectorsl and E from the exterior algebra is the following:

(W(z', dz/)| B (2", dz')) i= W (Bger, 0:)E(F, de') | oamomcp—goimgom.mdzr—0 (11)

i.e. perform all the derivations i+ on E and put the remaining factors, dz/ to zero.

Up to now, we implicitly used the exterior derivative d that maps bosghto fermionic
dz/. The exterior derivative may be decomposed as @+ = dz’ d,: +dz’ 8:i. But since
3 =00onCP, d reduces t@ = dz’ 3,;, which is nilpotentd? = 0. Its adjoint isd™ = z' 9y,
mapping fermionic ¢ to bosonicz/, being also nilpotentd™)? = 0. 3+ is an interior
derivative with respect to the vector fietda...

The final prominent geometrical object that we consider is the holomorphic Lie
derivative with respect to a vector field which is an anti-commutator

Ly =1[8,v'0q.]+ . (12)

(OnCP, by definitionL,, = [0+, w! g, +wi-;8d5,]+ corresponds to a 1-complex-parameter
group. There is a decompositidn, = £, + L, = [3, w'dg, + widgz]+ + [9, widgy +
w:dg=]+, where eachl, and £, corresponds to a 1-complex-parameter group.) From
equation (12), an important property follows immediately,

[£y,9]-=0. (13)
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The Lie derivative is self-adjoint if the interior derivative is adjointao This is true
for

H = ;Cziaz,. =0, 3+]+ = Ziazi +dz! Oqzi - (14)

The first term counts the powers in the coordinates of an expression, that it is applied on.
So we define the boson number operatbr= z'd.:, of form degree 0. The second term
counts the form degree if it is applied toaform. Accordingly, we define the fermion
number operatoP := dz’ 34, which also has form degree 0. Due to equation (33nd

d* are conserved

[8, H]. = [8", H]. = 0. (15)

Equations (14) and (15) represent the algebra BFdimensional SUSY oscillator with the
SUSY HamiltonianH and charge$ anda*, which can be combined into two self-adjoint
chargesQ; = d + 9% and Q, = —i(d — 3™).

Locally a holomorphic Lie derivative is just a total derivative with respect to a complex
parametep = t +it. Since for our trivial topology local and global concepts coincide, we
have on the entire space

d
— YO = HY®) (16)
for any
W) = W(Z'(0),d/(0) = v(z'e?, dz/ e = e "W (:', dz/) € ACP (17)

wherez! = z/(0) and &/ = dz/(0).
Hence, holomorphic forms are subject to an ‘evolution’ in the parameterresponding
to a trivial line bundle of chart€(9) x Cr?(zl, ..., zP). 6 parametrizes a sequence of charts
on CP each representing the system at an ‘instantAlthough each chart is a Hilbert space,
the whole line bundleC(9) x CP(z), representing a complex ‘evolution’, is not a Hilbert
space.
Itis, however, possible to use inherent information to eliminate the Euclidsach that
the remaining bundle is a Hilbert space as we are accustomed to. Along with equation (16)

d

—v(@)=0 18

@ ©) (18)
also holds, sinca(z'e?, dz/ e?) is holomorphic ind. We use equation (18) to eliminate
7 from (16)

d
i— () = HV(r). (19)
dr
This identifiest as the time and the system evolves within a bundle of cHatiy(r) x
CP(z%, ..., zP), which is a Hilbert space as a whole and the scalar product is preserved in

t-evolution automatically.
Conversely, we can eliminateand end up with

d
——W(r) = HY(7) (20)
dr
corresponding to an alternative bunde (t) x CP(z%, ..., z?). r-evolution preserves the
scalar product due ta™ = —t, but the bundle itself is not a Hilbert space, cf [13].

Considering the limit — oo of equation (17), by use of (14), we prove that any state with
p > 1is 0-exact, if and only if it isd-closed, which is Poincéis lemma onCP. More
precisely, we find that the only non-trivial cohomology class contains the constant numbers
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with zero eigenvalue of{, representing the normalized state 1, which is the only state left
in the limit T — oco. Thus it follows that, with the exception of the SUSY singlet vacuum 1,
all other states are paired by the operatorThis conforms, of course, with the fact that
the conditionsd¥ = 0, while W £ ..., alternatively expressed by = 9TW = 0, are
solved directly by = constant

We emphasize that (19) and (20) 67 are equivalent. The first one describes evolution
on a Hilbert space, the second one encodes the cohomology of the underlying manifold by
supplying a homotopy of the manifold, which renders the non-trivial cohomology classes
in the limit T — oco. This makes transparent the intimate relation between the SUSY and
the time evolution which is a characteristic feature of any SUSY theory.

Since the holomorphic Lie derivative is an operator of form degree zero, it commutes
with the fermion number operata?, of which the eigenstates are homogeneptferms
corresponding to the eigenvalge Hence the eigenstates of a holomorphic Lie derivative
can always be arranged to yield homogeneoidisrms. Thed-operator provides a pairing by
mapping a non-closegd-form to an exact p + 1)-form, which both span a two-dimensional
eigenspace corresponding to an eigenvalu€ o{up to further degeneracy not related to
SUSY). Two Lie derivatives are particularly interesting:

(i) The HamiltonianH yielding a complete set of eigenstates given by monomials

1
oV = (ehn(?)n. . Py (dz P () (dZ PP
nilno! ... np!

nj:0,1,2,... pj:071 p:pl+p2++pD

(21)

corresponding to the energy vallie=n; +no+---+np + p1+ p2+---+ pp and being
orthonormal

@ g@)
(Op ', ®p ) = 5,11,1/13”2”'2 .. 5,,0,1/,)31,11,/131,21,/2 e Bpppr - (22)

(i) The Lie derivative corresponding to rigid translations, which reduces to a simple
directional derivative on any form

Loy, = [0, ¢ 0] = 0y ¢ = constante C. (23)
The eigenvalue problem reads

c'd.ik = ak a=caeC (24)
and its solution is

kP = e 2 g (dzyP (dz)2 L (dz D) (25)

after normalization, using ex@*'9.)W(z/, dz¥) = W(z/ + a*/, dz*). Coherent states of
different form degree are orthogonal, but the scalar product of two arbitrary coherent states
is

, Ly iy i ki
(kP kD)) = et amlaps g Spopp - (26)

The generalize the coherent states of the bosonic harmonic oscillator, which are
contained for the special cage= 0. The characteristic properties of the bosonic coherent
states are preserved for arbitrgpy In particular, they constitute an overcomplete set, if
the ; are not restricted to a subset of t8€ plane, which is just complete [14] and they

are minimum uncertainty states with respect to the position operétpté2)(z' + 9,:) and
momentum operator§/+/2)(z' — 9.:) for any p. The coherent states above have to be
distinguished from ‘supercoherent states’ as discussed in [15], which employ Grassmann
parameters.

p1piOp2py - - -
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3. Concluding remarks

The whole formalism is invariant undéf (D) transformations’ — z' = A’;z/ where
A'; € U(D), which is the symmetry group of the classical bosonic oscillator. In fact,
as is discussed in [7], the full symmetry group of the SUSY oscillator is the supergroup
U(D/D), which combines thé/ (D) transformation with the interchange of objects paired
by the SUSY charges. The Hamiltonian generates an Abelian subgroup corresponding to
evolutionU (D/D) = U(1)(¢t) x SU(D/D). In contrast the strictly real approach of [13] has
only O (D) in the bosonic sector being promoted@g§D/ D), which contains no continuous
Abelian subgroup that could account for evolution.

So far, we have neither used any non-holomorphic quantities, nor did we use a metric
on the manifold. By means of these additional ingredients, it is possible to give an integral
version of the scalar product equation (11) fop-aand ag-form by using the Hodge star

S 1 e S

(WP (', dz/)| B9 (5, dz')) = —/ e " imp P (7f dz7) x @ (2K, dZ') 27)

2[77TD cp
where the Hodge star is with respect to the standard Euclidean metric and in our coordinates
the corresponding orthonormal frame {81, 0,1, 9,2, dy2, ..., dx», dy0}. Absorbing the
exponential into the entries of the scalar product, we have

1 S

(WP|E@) = 7f WPz dzly * (75, dz'|E@) . (28)
2p7TD cp

The scalar product vanishes wheneyef ¢, because fop — g > 0 a (p + 2D — g)-form
vanishes by antisymmetry and fgr— ¢ < O we integrate over a set of measure zero in
2D-dimensional space. For arbitrary elements of the exterior algebra, equations (27) or (28)
have to be applied after decomposition into homogengoefems. For 0-forms the above
version for the scalar product reproduces the usual Bargmann—Fock prescription [1, 2] and
coincides with the coherent state representation for the bosonic harmonic oscillator [14].
It is remarkable that we have managed to integrate fermionic quantities with conventional
integration, such that our integral version of the scalar product is different from the usual
Grassmann integratioa la Berezin [16].

Finally, if we had developed the formalism on the ent@&, thus considering forms
I'(z',dz/, z¥, dz'), we would have needed a prescription in order to select the holomorphic
forms that represent the physical states. This is accomplished by imp@Birg0, while
I'#0.... ThereforeACP = @,_, A’CP = H(CP,d) = ®,_,H"(CP. ) such that we
are actually working in the non-trivial cohomology sectordof
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