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Abstract. In the Bargmann–Fock representation the coordinateszi act as bosonic creation
operators while the partial derivatives∂zj act as annihilation operators on holomorphic 0-forms as
states of aD-dimensional bosonic oscillator. Also consideringp-forms and further geometrical
objects as the exterior derivative and Lie derivatives on a holomorphicCD , we end up with
an analogous representation for theD-dimensional supersymmetric oscillator. In particular, the
supersymmetry multiplet structure of the Hilbert space corresponds to the cohomology of the
exterior derivative. In addition, a 1-complex parameter group emerges naturally and contains
both time evolution and a homotopy related to cohomology. The emphasis is on calculus.

1. Introduction

The conventional Bargmann–Fock representation displays theD-dimensional bosonic
harmonic oscillator by using holomorphic 0-forms on a manifoldCD to represent states
in a Hilbert space. The bosonic creation and annihilation operators are represented byzi

and∂zj , respectively [1–3]. Thus, the Bargmann–Fock representation is a local geometrical
concept. We extend this idea to include holomorphicp-forms and consider geometrical
operations on these to find that theD-dimensional supersymmetric (SUSY) oscillator [4–8]
is realized in every detail. This approach constitutes an alternative to the standard use of
Grassmann variables, as discussed in [9, 10] and in many papers quoted therein.

One way to develop the formalism would be to reformulate the local differential
geometry of the fullCD and impose the restriction to holomorphic quantities afterwards,
since the standard geometrical apparatus is more familiar for the more general case [11, 12].
Instead, in the second section, we will develop a calculus for a purely holomorphic
differential geometry and, by immediate interpretation, built up the corresponding physical
system simultaneously. The only structure that is not really geometric on a holomorphic
manifold but an additional ingredient is the scalar product, of which we give an alternative
definition not involving any integral which would exceed the concept of holomorphic
geometry. We will see that supersymmetry (SUSY) is supplied by the operator∂. The
Hamiltonian is a Lie derivative corresponding to a 1-complex-parameter group that can be
split by holomorphicity into two equivalent 1-parameter groups. One can be identified with
evolution in a Hilbert space. The other supplies a homotopy that occurs in the proof of
Poincaŕe’s lemma [11]. We end this section with a brief discussion of the eigenstates of two
Lie derivatives, the first one being the Hamiltonian and the second one yielding coherent
states.
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The concluding remarks of the third section will first comment on the underlying
supergroup structure. Secondly, for completeness, we will give an integral expression for
the scalar product also accomodatingp-forms. This will relate our representation, which
dispenses with square-integrable functions, to the coherent state representation and other
familiar representations, where square-integrable functions are employed. Finally, we give
a prescription that would give us the physical states represented by holomorphic forms, if
we started with the geometry of the fullCD.

In the following, all commutators are graded ones, i.e. if both entries have odd form
degree, we have an anti-commutator, otherwise we have a commutator. The type of the
commutator is indicated by a subscript for the convenience of the reader. The same indices
in upper and lower position indicate a sum from 1 toD.

2. Holomorphic geometry and the SUSY oscillator

Consider a manifoldR2D and choose a global parametrizationxj , yj , j = 1, 2, . . . , D,
where bothxj and yj take values inR. We combine pairs of real coordinates into
zj = xj + iyj taking values inC, such that our manifold is nowCD. Furthermore,
we demand that any functionCD → C be of the form

f (zi) = f0 + fkz
k + fklz

kzl + · · · fkl... = constant∈ C (1)

i.e. holomorphic around the originz1 = z2 = · · · = zD = 0. The series in equation (1)
has to be convergent on all ofCD and we call a manifold, where such functions liveCD

h
(holomorphicCD). In fact, f (zi) < constant× exp(−∑D

k=1(z
k)2/2) [3], in order to yield

normalizable states.
Besides the functions, it is natural to have holomorphic vector fields on our manifold.

Since we work in a fixed frame, there is a canonical decomposition

v = vi∂zj ∈ T CD
h (2)

wherevi(zi) are holomorphic functions as in equation (1) and∂zj = 1
2(∂xj − i∂yj ) are the

holomorphic basis vectors∈ T CD
h . Among the coordinateszi and the basis vectors∂zj the

following commutation relations hold due to∂zj zi = δi
j :

[zi, zj ]− = [∂zi , ∂zj ]− = 0 [∂zi , zj ]− = δ
j

i . (3)

This is the algebra of bosonic creatorszi and annihilators∂zj operating on functions
equation (1).

From this point of view, we can applyzi to a ‘vacuum’ 1 (from the left) in order to
get equation (1), which represents a general state in a bosonic Fock space. Along with the
tangent spaceT CD

h of the holomorphic vectorsv, the dual cotangent spaceT ∗CD
h , containing

the holomorphic 1-formsF (1) that provide linear maps of the holomorphic vectors toC, is
a natural geometrical structure. Again, there is a canonical decompositionFj (z

i) dzj with
Fj holomorphic as in equation (1) and dzj = dxj + i dyj . A holomorphicp-form may be
written as

F (p)(zi, dzj ) = Fk1...kp
(zi) dzk1 . . . dzkp ∈ 3pCD

h (4)

with the factorsFk1...kp
(zi) as in equation (1). Observe that 06 p 6 D, although the

dimension ofCD
h is 2D. Finally, holomorphic forms are (finite) power series in the dzj

9(zi, dzj ) = F0(z
i) + Fk(z

i) dzk + Fkl(z
i) dzk dzl + · · · ∈ 3CD

h =
D⊕

p=0

3pCD
h (5)

spanning the holomorphic exterior algebra.
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On holomorphic forms the interior derivative is a natural geometrical operation that
maps3pCD

h to 3p−1CD
h by contraction with a holomorphic vectorv. As used in [13] an

interior derivative on a real manifold, induced by a real vectorui∂xi , can be written as

ui∂dxi := ui ∂

∂dxi
≡ iu (6)

where ∂/∂dxi is a Grassmann left derivative with respect to the Grassmann number dxi .
The duality of frame and coframe is expressed by∂dxj/∂dxi = δ

j

i . Accordingly, a vector
v = vk(zi)∂zk = 1

2vk(zi)∂xk − 1
2ivk(zi)∂yk induces an interior derivative

vi∂dzi := vi ∂

∂dzi
≡ iv (7)

where we have defined a new Grassmann left derivative∂dzj = 1
2(∂dxj − i∂dyj ). (On

CD, a general vectorw = wk
z (z

i, z̄j)∂zk + wk
z̄ (z

i, z̄j)∂z̄k induces the interior derivative
iw ≡ wk

z∂dzk +wk
z̄∂dz̄k ). The duality of holomorphic frame∂zi and holomorphic coframe dzj

is expressed by∂dzj /∂dzi = δ
j

i . This gives rise to

[dzi, dzj ]+ = [∂dzi , ∂dzj ]+ = 0 [∂dzi , dzj ]+ = δ
j

i (8)

which is the algebra of fermionic creation operators dzj and annihilation operators∂dzj . The
commutators of mixed bosonic and fermionic entries are

[zi, dzj ]− = [zi, ∂dzj ]− = [∂zi , dzj ]− = [∂zi , ∂dzj ]− = 0 . (9)

Thus, equation (4) constitutes a general state vector of a Fock space withD bosonic andD
fermionic degrees of freedom.

The next task is to introduce a scalar product that makes the exterior algebra a Hilbert
space. We start by defining the adjoint operation. Inspired by the algebraic properties of
the elementary operatorszi, dzj , ∂zk, ∂dzl , we define their adjoints by

(zi)+ := ∂zi (dzj )+ := ∂dzj (10)

with the rules(A + B)+ = A+ + B+, (AB)+ = B+A+, (A+)+ = A and c+ = c∗, if
c = constant∈ C. While a state vector9(zi, dzj ) is a power series inzi, dzj , its dual
9+(∂dzl , ∂zk) is a power series in∂zk, ∂dzl . The prescription for the scalar product of two
state vectors9 and4 from the exterior algebra is the following:

〈9(zi, dzj )|4(zk, dzl)〉 := 9+(∂dzj , ∂zi )4(zk, dzl)|z1=z2=···zD=dz1=dz2=···=dzD=0 (11)

i.e. perform all the derivations in9+ on 4 and put the remaining factorszi, dzj to zero.
Up to now, we implicitly used the exterior derivative d that maps bosoniczj to fermionic

dzj . The exterior derivative may be decomposed as d= ∂ + ∂̄ = dzi ∂zi + dz̄i ∂z̄i . But since
∂̄ = 0 on CD

h , d reduces to∂ = dzi ∂zi , which is nilpotent∂2 = 0. Its adjoint is∂+ = zi∂dzi

mapping fermionic dzj to bosoniczj , being also nilpotent(∂+)2 = 0. ∂+ is an interior
derivative with respect to the vector fieldzi∂zi .

The final prominent geometrical object that we consider is the holomorphic Lie
derivative with respect to a vector fieldv, which is an anti-commutator

Lv = [∂, vi∂dzi ]+ . (12)

(On CD, by definitionLw = [∂ + ∂̄, wi
z∂dzi +wi

z̄∂dz̄i ]+ corresponds to a 1-complex-parameter
group. There is a decompositionLw = Lw + L̄w := [∂, wi∂dzi + wi

z̄∂dz̄i ]+ + [∂̄, wi
z∂dzi +

wi
z̄∂dz̄i ]+, where eachLw and L̄w corresponds to a 1-complex-parameter group.) From

equation (12), an important property follows immediately,

[Lv, ∂]− = 0 . (13)



6986 H-P Thienel

The Lie derivative is self-adjoint if the interior derivative is adjoint to∂. This is true
for

H := Lzi∂zi
= [∂, ∂+]+ = zi∂zi + dzi ∂dzi . (14)

The first term counts the powers in the coordinates of an expression, that it is applied on.
So we define the boson number operatorN := zi∂zi , of form degree 0. The second term
counts the form degree if it is applied to ap-form. Accordingly, we define the fermion
number operatorP := dzi ∂dzi , which also has form degree 0. Due to equation (13),∂ and
∂+ are conserved

[∂, H ]− = [∂+, H ]− = 0 . (15)

Equations (14) and (15) represent the algebra of aD-dimensional SUSY oscillator with the
SUSY HamiltonianH and charges∂ and∂+, which can be combined into two self-adjoint
chargesQ1 = ∂ + ∂+ andQ2 = −i(∂ − ∂+).

Locally a holomorphic Lie derivative is just a total derivative with respect to a complex
parameterθ = τ + it . Since for our trivial topology local and global concepts coincide, we
have on the entire space

− d

dθ
9(θ) = H9(θ) (16)

for any

9(θ) = 9(zi(θ), dzj (θ)) = 9(zie−θ , dzj e−θ ) = e−θH9(zi, dzj ) ∈ 3CD
h (17)

wherezi ≡ zi(0) and dzj ≡ dzj (0).
Hence, holomorphic forms are subject to an ‘evolution’ in the parameterθ corresponding

to a trivial line bundle of chartsC(θ)×CD
h (z1, . . . , zD). θ parametrizes a sequence of charts

on CD
h each representing the system at an ‘instant’θ . Although each chart is a Hilbert space,

the whole line bundleC(θ) × CD
h (z), representing a complex ‘evolution’, is not a Hilbert

space.
It is, however, possible to use inherent information to eliminate the Euclideanτ such that

the remaining bundle is a Hilbert space as we are accustomed to. Along with equation (16)

d

dθ̄
9(θ) = 0 (18)

also holds, since9(zie−θ , dzj e−θ ) is holomorphic inθ . We use equation (18) to eliminate
τ from (16)

i
d

dt
9(t) = H9(t) . (19)

This identifiest as the time and the system evolves within a bundle of chartsU(1)(t) ×
CD

h (z1, . . . , zD), which is a Hilbert space as a whole and the scalar product is preserved in
t-evolution automatically.

Conversely, we can eliminatet and end up with

− d

dτ
9(τ) = H9(τ) (20)

corresponding to an alternative bundleR+(τ ) × CD
h (z1, . . . , zD). τ -evolution preserves the

scalar product due toτ+ = −τ , but the bundle itself is not a Hilbert space, cf [13].
Considering the limitτ → ∞ of equation (17), by use of (14), we prove that any state with
p > 1 is ∂-exact, if and only if it is∂-closed, which is Poincaré’s lemma onCD

h . More
precisely, we find that the only non-trivial cohomology class contains the constant numbers
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with zero eigenvalue ofH , representing the normalized state 1, which is the only state left
in the limit τ → ∞. Thus it follows that, with the exception of the SUSY singlet vacuum 1,
all other states are paired by the operator∂. This conforms, of course, with the fact that
the conditions∂9 = 0, while 9 6= ∂ . . . , alternatively expressed by∂9 = ∂+9 = 0, are
solved directly by9 = constant

We emphasize that (19) and (20) onCD
h are equivalent. The first one describes evolution

on a Hilbert space, the second one encodes the cohomology of the underlying manifold by
supplying a homotopy of the manifold, which renders the non-trivial cohomology classes
in the limit τ → ∞. This makes transparent the intimate relation between the SUSY and
the time evolution which is a characteristic feature of any SUSY theory.

Since the holomorphic Lie derivative is an operator of form degree zero, it commutes
with the fermion number operatorP , of which the eigenstates are homogeneousp-forms
corresponding to the eigenvaluep. Hence the eigenstates of a holomorphic Lie derivative
can always be arranged to yield homogeneousp-forms. The∂-operator provides a pairing by
mapping a non-closedp-form to an exact(p+1)-form, which both span a two-dimensional
eigenspace corresponding to an eigenvalue ofLv (up to further degeneracy not related to
SUSY). Two Lie derivatives are particularly interesting:

(i) The HamiltonianH yielding a complete set of eigenstates given by monomials

8
(p)

E = 1√
n1!n2! . . . nD!

(z1)n1(z2)n2 . . . (zD)nD (dz1)p1(dz2)p2 . . . (dzD)pD

nj = 0, 1, 2, . . . pj = 0, 1 p = p1 + p2 + · · · + pD

(21)

corresponding to the energy valueE = n1 + n2 + · · · + nD + p1 + p2 + · · · + pD and being
orthonormal

〈8(p)

E , 8
(p′)
E′ 〉 = δn1n

′
1
δn2n

′
2
. . . δnDn′

D
δp1p

′
1
δp2p

′
2
. . . δpDp′

D
. (22)

(ii) The Lie derivative corresponding to rigid translations, which reduces to a simple
directional derivative on any form

Lci∂zi
= [∂, ci∂dzi ]+ = ci∂zi ci = constant∈ C. (23)

The eigenvalue problem reads

ci∂ziκ = ακ α = ciαi ∈ C (24)

and its solution is

κ(p)
α = e− 1

2 α∗ iαi eαiz
i

(dz1)p1(dz2)p2 . . . (dzD)pD (25)

after normalization, using exp(α∗i∂zi )9(zj , dzk) = 9(zj + α∗j , dzk). Coherent states of
different form degree are orthogonal, but the scalar product of two arbitrary coherent states
is

〈κ(p)
α , κ

(p′)
α′ 〉 = e− 1

2 (α∗ iαi+α∗′ iα′
i−2α∗ iα′

i )δp1p
′
1
δp2p

′
2
. . . δpDp′

D
. (26)

The κ
(p)
α generalize the coherent states of the bosonic harmonic oscillator, which are

contained for the special casep = 0. The characteristic properties of the bosonic coherent
states are preserved for arbitraryp. In particular, they constitute an overcomplete set, if
the αi are not restricted to a subset of theCD plane, which is just complete [14] and they
are minimum uncertainty states with respect to the position operators(1/

√
2)(zi + ∂zi ) and

momentum operators(i/
√

2)(zi − ∂zi ) for any p. The coherent states above have to be
distinguished from ‘supercoherent states’ as discussed in [15], which employ Grassmann
parameters.
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3. Concluding remarks

The whole formalism is invariant underU(D) transformationszi → z′ i = 3i
jz

j where
3i

j ∈ U(D), which is the symmetry group of the classical bosonic oscillator. In fact,
as is discussed in [7], the full symmetry group of the SUSY oscillator is the supergroup
U(D/D), which combines theU(D) transformation with the interchange of objects paired
by the SUSY charges. The Hamiltonian generates an Abelian subgroup corresponding to
evolutionU(D/D) = U(1)(t)×SU(D/D). In contrast the strictly real approach of [13] has
only O(D) in the bosonic sector being promoted toO(D/D), which contains no continuous
Abelian subgroup that could account for evolution.

So far, we have neither used any non-holomorphic quantities, nor did we use a metric
on the manifold. By means of these additional ingredients, it is possible to give an integral
version of the scalar product equation (11) for ap- and aq-form by using the Hodge star

〈9(p)(zi, dzj )|4(q)(zk, dzl)〉 = 1

2pπD

∫
CD

e−zmz̄m9(p)(zi, dzj ) ∗ 4̄(q)(z̄k, dz̄l) (27)

where the Hodge star is with respect to the standard Euclidean metric and in our coordinates
the corresponding orthonormal frame is{∂x1, ∂y1, ∂x2, ∂y2, . . . , ∂xD , ∂yD }. Absorbing the
exponential into the entries of the scalar product, we have

〈9(p)|4(q)〉 = 1

2pπD

∫
CD

〈9(p)|z̄i, dz̄j〉 ∗ 〈z̄k, dz̄l|4(q)〉 . (28)

The scalar product vanishes wheneverp 6= q, because forp − q > 0 a (p + 2D − q)-form
vanishes by antisymmetry and forp − q < 0 we integrate over a set of measure zero in
2D-dimensional space. For arbitrary elements of the exterior algebra, equations (27) or (28)
have to be applied after decomposition into homogeneousp-forms. For 0-forms the above
version for the scalar product reproduces the usual Bargmann–Fock prescription [1, 2] and
coincides with the coherent state representation for the bosonic harmonic oscillator [14].
It is remarkable that we have managed to integrate fermionic quantities with conventional
integration, such that our integral version of the scalar product is different from the usual
Grassmann integratioǹa la Berezin [16].

Finally, if we had developed the formalism on the entireCD, thus considering forms
0(zi, dzj , z̄k, dz̄l), we would have needed a prescription in order to select the holomorphic
forms that represent the physical states. This is accomplished by imposing∂̄0 = 0, while
0 6= ∂̄ . . . . Therefore3CD

h = ⊕D
p=0 3pCD

h ≡ H(CD, ∂̄) = ⊕D
p=0 Hp(CD, ∂̄) such that we

are actually working in the non-trivial cohomology sector of∂̄.
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